多项式的因式分解方法有哪些?
多项式的因式分解方法共计12种,方法如下:
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x -2x -x(2003淮安市中考题)
x -2x -x=x(x -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)
解:a +4ab+4b =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
解:m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析: 1 -3
7 2
2-21=-19
解:7x -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)
7、 换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x -x -6x -x+2
解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x
=x [2(x + )-(x+ )-6
令y=x+ , x [2(x + )-(x+ )-6
= x [2(y -2)-y-6]
= x (2y -y-10)
=x (y+2)(2y-5)
=x (x+ +2)(2x+ -5)
= (x +2x+1) (2x -5x+2)
=(x+1) (2x-1)(x-2)
8、 求根法
令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )
例8、分解因式2x +7x -2x -13x+6
解:令f(x)=2x +7x -2x -13x+6=0
通过综合除法可知,f(x)=0根为 ,-3,-2,1
则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )
例9、因式分解x +2x -5x-6
解:令y= x +2x -5x-6
作出其图象,见右图,与x轴交点为-3,-1,2
则x +2x -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、 利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例11、分解因式x +9x +23x+15
解:令x=2,则x +9x +23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x +9x +23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例12、分解因式x -x -5x -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得
则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
多项式的因式分解方法有哪些?
多项式的因式分解方法共计12种,方法如下:1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1)2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,...
多项式因式分解有哪些方法与技巧?
技巧1:提取公因式法 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。技巧2:公式法 技巧3:十字相乘法 技巧4:双(长)十字相乘法 双十字相乘法的本质与十字相乘法是一致的,它一般适用于二次六项式(二元二次六项...
大学高次多项式的因式分解
高阶多项式因式分解法:1.高阶多项式因式分解的一般方法:运用定理。2.与首末两项等距离的项的系数相等的高阶多项式因式分解法的方法。高次多项式因式分解的一般方法 定理1:设f(x)=anxn+an-1xn-1+…+a1x+a0是一个整系数多项式,如果有理数v\/u是它的一个根,其中u与v互素,则u|an,v|a0。特...
3次方多项式有什么因式分解的方法,举些例子
2. 提公因式法:如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。例1:5x3+10x2+5x 解析:显然每项均含有公因式5x,故可考虑提取公因式5x,接下来剩下x2+2x+1仍可继续分解。解:原式=5x(x2+2x+1)=5x(x+1)2 2. 公式法即多项式如果满足...
如何把多项式因式分解?
因式分解的四种方法如下:1.公因数法:当多项式的所有项都含有共同的因子时,可以把这个因子提出来,然后用分配律将剩下的部分相加,进一步化简。2.十字相乘法:对于二次多项式ax²+bx+c,其因式可以表示为两个一次多项式的乘积。使用十字相乘法时,将a和c的乘积分解为两个因数的乘积,然后根据...
三次多项式如何因式分解
1、提公因式法:提公因式法是因式分解的一种基本方法,它通过提取多项式中的公因式来简化表达式。对于一个三次项,我们可以尝试提取公因式,将多项式转化为两个二项式的乘积。例如,对于多项式ax^3+bx^2+cx+d,我们可以提取公因式x,得到(x+1)(ax^2+bx+d)形式的因式分解。2、公式法:公式法...
3次方多项式有什么因式分解的方法,举些例子
试除法:这是最基本的方法之一。例如对于多项式x³ - 2x² + x - 1,可以尝试将某些项提取出来进行因式分解。通过观察,我们可以尝试提取公因子x,得到x。接着我们可以发现,括号中的多项式实际上是完全平方多项式,因此可以进一步分解为²的形式。这样我们就将x³ - 2x² ...
求关于多项式(高次)因式分解的简便方法!
多项式的因式分解方法多样,但核心在于识别和应用这些方法。首先,如果多项式的各项有公因式,那么先提公因式,比如多项式-12x2nyn+18xn+2yn+1-6xnyn-1可以提取-6xnyn-1作为公因式,简化为-6xnyn-1(2xny-3x2y2+1)。其次,如果多项式的各项没有公因式,可以尝试使用公式、十字相乘法等方法分解。
含多项式的因式分解有几种解法啊?求详细,最好有例题
因式分解解法归纳:1.提公因式法。2.公式法。3.分组分解法。4.凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)]5.组合分解法。6.十字相乘法。7.双十字相乘法。8.配方法。9.拆项补项法。10.换元法。11.长除法。12.求根法。13.图象法。14.主元法。15.待定系数法。16.特殊值法...
什么方法可以把多项式分解因式?
1、一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。3、待定系数法是初中数学的一个重要...